Pages 22-24 (#1-17)

1

Evaluate, where
a)
b)
c)
d)
e)
f)

2

a) 2
b) 4
c) -5
d) -3 or -4

3

Milk is leaking from a carton at a rate of 3 mL/min. There is 1.2 L of milk in the carton at 11:00 a.m.

a) Function notation:

b) At 1:00 p.m. ( min):

c) Time when 450 mL is left:

4

Solve a) Vertex form: \begin{align} h(x) &= 2(x^2 - 6x) + 18 \\ &= 2(x^2 - 6x + 9 - 9) + 18 \\ &= 2((x - 3)^2 - 9) + 18 \\ &= 2(x - 3)^2 - 18 + 18 \\ &= 2(x - 3)^2 \end{align} Vertex: b) Solve : Factor:

5

Find inverse of : \begin{align} y &= 4x - 7 \\ x &= 4y - 7 \\ x + 7 &= 4y \\ y &= \frac{x+7}{4} \\ \therefore g^{-1}(x) = \frac{x+7}{4} \end{align} # 6 Solve a) Vertex form: \begin{align} f(x) &= -(x^2 - 10x) - 16 \\ &= -(x^2 - 10x + 25 - 25) - 16 \\ &= -((x - 5)^2 - 25) - 16 \\ &= -(x - 5)^2 + 25 - 16 \\ &= -(x - 5)^2 + 9 \end{align} Vertex: b) Solve : Quadratic formula:

7

Find inverse of : \begin{align} y &= 5x + 2 \\ x &= 5y + 2 \\ x - 2 &= 5y \\ y &= \frac{x - 2}{5} \\ \therefore h^{-1}(x) = \frac{x - 2}{5} \end{align}

8

Solve a) Vertex form: \begin{align} g(x) &= -3(x^2 - 6x) - 27 \\ &= -3(x^2 - 6x + 9 - 9) - 27 \\ &= -3((x - 3)^2 - 9) - 27 \\ &= -3(x - 3)^2 + 27 - 27 \\ &= -3(x - 3)^2 \end{align} Vertex: b) Solve :

9

Find inverse of : \begin{align} y &= 2x - 5 \\ x &= 2y - 5 \\ x + 5 &= 2y \\ y &= \frac{x+5}{2} \\ \therefore f^{-1}(x) = \frac{x+5}{2} \end{align}

10

Solve a) Vertex form: \begin{align} h(x) &= (x^2 - 4x) + 3 \\ &= (x^2 - 4x + 4 - 4) + 3 \\ &= ((x - 2)^2 - 4) + 3 \\ &= (x - 2)^2 - 1 \end{align} Vertex: b) Solve :

11

Find inverse of : \begin{align} y &= 3x + 4 \\ x &= 3y + 4 \\ x - 4 &= 3y \\ y &= \frac{x - 4}{3} \\ \therefore g^{-1}(x) = \frac{x - 4}{3} \end{align}

12

a)

b)

c) Solving :

13

a)

b)

c) Finding max value:

14

Solve for

a) Vertex form:

Vertex:

b) Solve :

15

Find inverse of :

16

Solve

a) Vertex form:

Vertex:

b) Solve :

17

Solve

a) Vertex form:

Vertex:

b) Solve :