🔍 Searching and Sorting in Java

Searching Algorithms

Linear Search checks each element in the array until the desired value is found or the end is reach.

public class LinearSearchExample {
    public static int linearSearch(int[] arr, int target) {
        for (int i = 0; i < arr.length; i++) {
            if (arr[i] == target) {
                return i; // Target found
            }
        }
        return -1; // Target not found
    }
}
  • Time Complexity O(n)

Binary Search is efficient for sorted array. It repeatedly divides the search interval in half.

public class BinarySearchExample {
    public static int binarySearch(int[] arr, int target) {
        int low = 0;
        int high = arr.length - 1;
 
        while (low <= high) {
            int mid = (low + high) / 2;
 
            if (arr[mid] == target) {
                return mid; // Target found
            } else if (arr[mid] < target) {
                low = mid + 1; // Search right half
            } else {
                high = mid - 1; // Search left half
            }
        }
        return -1; // Target not found
    }
}
  • Time Complexity O(log n)

Sorting Algorithms

Selection Sort

Selection Sort repeatedly selects the minimum element and moves it to the sorted portion of the array.

public class SelectionSortExample {
    public static void selectionSort(int[] arr) {
        for (int i = 0; i < arr.length - 1; i++) {
            int minIndex = i;
 
            // Find the minimum element in unsorted array
            for (int j = i + 1; j < arr.length; j++) {
                if (arr[j] < arr[minIndex]) {
                    minIndex = j;
                }
            }
 
            // Swap the found minimum element with the first element
            int temp = arr[minIndex];
            arr[minIndex] = arr[i];
            arr[i] = temp;
        }
    }
}
  • Time Complexity O(n^2)

Insertion Sort

Insertion Sort builds the sorted array one element at a time by comparing and inserting elements into their correct position.

public class InsertionSortExample {
    public static void insertionSort(int[] arr) {
        for (int i = 1; i < arr.length; i++) {
            int key = arr[i];
            int j = i - 1;
 
            // Move elements greater than key to one position ahead
            while (j >= 0 && arr[j] > key) {
                arr[j + 1] = arr[j];
                j--;
            }
            arr[j + 1] = key;
        }
    }
}
  • Time Complexity O(n^2)

Understanding Big O Notation


Big O Notation describes the upper bound of an algorithm’s running time as the input size grow.

  • O(1) Constant time

  • O(log n) Logarithmic time (e.g., Binary Search)

  • O(n) Linear time (e.g., Linear Search)

  • O(n²) Quadratic time (e.g., Selection Sort, Insertion Sort)


Further Learning

References